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Abstract

We consider the general form of the stochastic approximation algorithm

ie i

, S M A anh(xn,cn), where h is not necessarily additive in En' Such algo-
rithms occur frequently in applications to adaptive control and identification
problems, where {gn} is usually obtained from measurements of the input and

output, and is almost always complicated enough that the more classical assump-
tions on the noise fail to hold. Let a = A/(n+1)*, O<q<l, and let X, + 6 w.p. l.?

Define Un = (n+l)°‘/2

(xn-e). Then, loosely speaking, it is shown that the sequence4
1' of suitable continuous parameter interpolations of the sequence of "tails" of
| {Un} converges weakly to a Gaussian diffusion. From this we can get the

asymptotic variance of U_ as well as other information. The assumptions on
n

| S G PP

{En} and h(-,+) are quite reasonable from the point of view of applicationms.
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Introduction

Rates of convergence for stochastic approximation problems were given in
C l,v2, 3, 4], the latter two references getting better results via weak conver-
gence methods, for both constrained and unconstrained systems.

A form of stochastic approximation algorithm which is of increasing impor-

tance is the following. Let {an} denote a sequence of positive real numbers with

e ke h a suitable function and (En} a sequence of random variables. Define

the sequence of R'-valued random variables {Xn} by

(1.1) X, ® X +ahE g )

In (1] - [u4 ], the function h was essentially additive in £, as is usually the
case in classical Kiefer-Wolfowitz and Robbins-Munro type stochastic approximation
algorithms. Of course, if {5n} is a sequence of independent random variables,

then h(Xn,En) can be written in the fom“\E[h(Xn,gn)‘Xn] + ¢n’ where 0n = h(xn,En) -

e

E[h(xn,gn)lxn] is a member of an orthogonal sequence, and we are back to the
classical case. In the applications that we have in mind the {Cn} can be rather

general processes.

3 e TR T

The more general form (1.1) arises in applications to problems in the recur-

sive identification of the parameters of linear systems, or in the so-called self-

? tuning regulators or in other applications of adaptive systems [5, 6]. Such applica-
g tions are the motivation for this work. Often xn is an estimate of the vector system
parameter and En is a random vector which is related to the measured inputs and
outputs of the system. The rate of convergence problem for such situations has not
been dealt with, and somewhat different methods are required.
In. this paper we develop rate of convergence results for (1.1) under quite
reasonable conditions. Owing to the way in which (1.1) arises in applications,

the {Cn) is rarely a sequence of independent random variables, and

e

E(h(Xn,Cn)ICO,..,Ln_l) is rarely a function only of X__ . Thus classical




s
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rate of convergence methods (as in [1 ], [ 2 ]) cannot be used directly. We use
some of the ideas in [3], [4], but adapted to our case, and under weaker
conditions on the noise sequences.

The problem is formulated and some assumptions given in Section 2. Weak
convergence of a sequence of normalized {Xn} is given in Section 3, and the general

rate result appears in Section 4.

24 Tepminology and Problem Formulation

For a € (0,1] and A a matrix, set a = A/(n+1)®. Since we are concerned
with rates of convergence, we assume convergence (see [ 4 ] for a detailed discus-

sion of the convergence both w.p. 1 and weakly). In particular, we suppose that

there is a 8 €R' such that xn + 6 w.p. 1. Set Un = (m-l)a/2

a/2h

(Xn-a), Atn =
(n+1)7%, hn = h(e,gn) and En = (n+2/n+1) . Let h(+,E) be continuously dif-
ferentiable for each £, with the gradient hx(-,-) being Borel-measurable.

There is a function O(+) such that with H defined by (2.1), (2.2) holds.

(See [ 3], eqn. (5.2) for a related calculation for the case where h is additive

in £.)
1
(2.1) H = Ah_(6,£ ) + I+ 0(=)I
n X 2(n+l)l-° n+l
1
nt2.a/2
2y A('n—q) J[hx(9+t(xn_-e),En)-hx(egﬁn)]dt
0
a/2

+ A[(fﬁ-)

- 1] hx(e,gn)




£ = h
(2.2) Un+l (I + Athn)Un + A/Atn hn

For future use define 6W = VAt h_, 6W_ = /At h_.
——e—s—— O o TR ;R n n

Lemmas 1 and 2 contain some preparatory results concerning the iteration

(2.2), and tightness of (Un} (i.e., sup, P(|Un| > N) » 0 as N+ «) is proved in

Theorem 1.

3
1
Next, following the general approach of [ 3], a sequence of processes 3
{UN(-)} is defined as follows. Let t = ?;é bt;, t, = 0 and define m(t) = ]
. e B . e
max{k: tkiﬁ}. Set U (0) = Uy and U () = UN+n in [tN+n’tN+n+l)' Thus U () is

a process whose paths are piecewise constant and in D'[0,®), the space of R"-valued
functions which are right continuous on [0,») and have left-hand limits on (0,=).
Since it will be important for us to go back and forth between the (Un} and {UN(')}
sequences, the functions m(.) and t, will be used quite frequently, occasionally
(and regrettably) causing some complicated notation.

Owing to the scale factor a_ = AAt , the interpolation UN(') is quite natural
for this problem. In Theorem 2 it will be shown that {UN(°)} is tight in D'[0,=)
and converges weakly to the stationary linear Gaussian diffusion (4.1). As is
common in applications of weak convergence theory, if a sequence of measures
{un} is tight and converges weakly to u (all on R" or D'[0,=)), and u, and u are
induced by processes X"(+) and X(*), resp. (with paths in R” or D'[0,»)), then we
abuse terminolcgy and say that {X"} is tight and converges weakly to X. This weak
convergence gives us the basic rate of convergence result. Some advantages of our
approach are discussed in [ 3]. It yields the convergence in distribution (to a

normally distributed random variable, the stationary distribution of (4.1)) of

*From (2.1) we can guess that if a = 1 (resp. a < 1) the "effective" component of

Hn is (Ahx(e,gn) + 1/2) (Ahx(e,En), resp.).




{Un}, but also more, since it gives information on the correlation structure of
the process {UN+n’ n>0} for large N.

Remark on weak convergence. Billingsley [7 ] is the most comprehensive

reference. The space D[0,T] is discussed in [7 ], Sections 14 and 15. A brief
summary of relevant facts is given in [4 ], Chapter 2. Dr[o,w) is endowed with
the usual ({71, Section 14) Skorokhod topology, with which it is a complete separ-
able metric space. Convergence in Dr[O,w) occurs if, for some sequence T + =, it
occurs (for the truncated functions) in each DPIO,T].

Assumptions. (A1) - (A5) will be used throughout the paper.
(A1) Xn > § W.p. 1

(A2) h(-,*) is a Borel function, continuously differentiable in its first

argument for each value of the second, and the gradient hx(',') is Borel.

Also Eh(e,gn) Z 0 and
1
j[hx(e+t(xn—e),gn)-hx(e,gn)]dt +0 w.p.l
0

as n » o, (Certainly true if the En are bounded and hx(',°) is continuous.)

(A3a) There is a matrix H such that for some (hence each) T > 0 and each € > 0 E
m(jT+t)-1
lim P{sup max | § Ati(hx(e,sj)-ﬁ)l > e} =0,

nse  j>m 0<t<T i=m(jT)

(A3b) There is a ccnstant 1 such that for each ¢ > 0 and T > 0,

m(jT+t)-1
lim P{sup max | J st (|h (0,8)] - 1] > €} =0,
nse  §>n 0<t<T i=m(jT)

where x| = (x'x) /2 and |M| = sup|x|=l|Mx| if M is a matrix.
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Remark on (A3a and b). Conditions of type (A3a, A3b) were used extensively
in the monograph [ %], and as shown in that reference are rather weak and quite
natural for the problem. See, for example, the several cases discussed in [ ],
Chapter 2.2. The conditions are commonly satisfied by the noise processes which

appear in the usual applications to the identification problem. We mention only

the following three cases for (A3a): (a) Zaﬁ < « and {hx(e,in)-Ehx(e,En)} ortho-

]

gonal; (b) hx(e,gn)-Ehx(O,gn) = jgo bjwn—j’ for a broad class of {bj}’ {wj} where
{wj} are independent and identically distributed; (c) {En} stationary, (A5) holds
for h replacing h and Zag(log2i)2 < ® holds.
In order to illustrate our terminology and get some additional insight into

(A3), let us define a process n(t) as follows: n(0) = 0, and n(t) =

n-1
zi=0 Ati(hx(e,ﬁi)—ﬂ) on [tn’tn+l)' Then

m(t)-1
n(t) = ] at(h (8,5 )-H).
1=0

Condition (A3a) implies that the variation of the "increasing compressed interpola-

tion" n(t) over an arbitrary interval (a,a+T) goes to zero w.p. 1l as a + «,

(Ay) 1f a = 1, set H=AH + I/2, and if a < 1, set H = AH. The eigenvalues

gg.ﬁ'have negative real parts.

. = ' 00 o
(A5) Define R, by R = Eh'(8,E )h(8,§ ). Then supmzk=o|Rmk| < w., Also

sumeth(e,gm)l2 < o,

3. Tightress of {Un}
In order to simplify the presentation of the chain of calculations, we
present them partially in a sequence of lemmas. Among other things, we wish to
show that the H ~and ﬂn in (2.2) can be replaced by I and h » resp. Apart from

differences due to the greater generality of the noise here, the main differences

St




between the treatment of (1.1) and the past work where h was assumed additive in
£ are due to the randomness of the Hn' To deal with them, we exploit the
"averaging" or "smoothing" conditions (A3) and the stability condition (Au)

He use K to denote a constant whose value may change from usage to usage.

Henceforth {g, } denotes a sequence of positive real numbers such that

Ekek < o, Let {Mk} be a sequence of integers tending to ® as k + @, and define
the measureble sets (in the sample space) Ak' Bk and Ck by (note that jek 2ty
k
and m(jsk) > M, are equivalent statements)
m(jek+t)—l
2
A, = { sup max | ) Ati(Ahx(e,Ei)-AH)l > eh
]Ek:th O_<_ti€k 1=m(]€k)
m(jek+t)-l
2
Bk =] sup max | z Ati(|hx(6,£i)|-r)| 3-€k}’
je 2t M, O<t<e, 1=m(]ek)
1L
C, = swp If[h (e+t(x -9), £ )-h_(8, £ )ldt| > B 2y
M
0
Set Dk = Li(A (s LJ C ). Choose Mk such that P{Ak} + P{Bk} + P{Ck} :-Ek and

8 Ek’ ¥ Mk Such a choice is possible by (A3). Then P{Dk} = u > 0 as
k > », Consequently for wé& D and f = M , (A3) implies that the individual terms

in the sums in (A3) satisfy
2
|at, (A (6,,)-a1)| < u]Aley,
2
]Ati(|hx(6,£i)|-r)| < ke .

From the definitions of Mk and Dk we immediately get the following lemma.

Lemma 1. Under (Al) - (A3), there is a constant K such that for each k and w €& Dk

T S TN SRS SR g~
: R - S TV TR N v . DI T e




i

m(jek+ek)-l
Z At.IH.I < Ke
itit —

k]
i=m(jek) .

m(je tt)-1

| ) Ati(Hi_ﬁ3| :_Ksi o BE

i=n(je, ) k

We now proceed to put the iteration (2.2) into a more convenient form.
N
N

gals : 5
Define C by Cy . = I and for n < N, C_ = jr_rn(1+Atj H) = (TratyHy) «ee (I+BtHO).

Lemma 2. Assume (Al) to (A3). Then on a set whose probability is arbitrarily

close to 1

m(tN+t+s)

€3.1)

P | A Cm(tN+s) Gy

as N » =, uniformly on bounded t-intervals. Also, there is a real K such that

for each k and each N > M, and w & Dk and t < ¢

k k

S—

3! m(tN+t+s)

(3.2)

’; Cm(tN+s) RIS ol

where |o| :_Kei.

Proof. (3.1) follows directly from (3.2) and we only prove (3.2) for t < g,_ and

k

s =0, For M > m we have

w ¥ M M M
CemMIrm AT )N ¢ ] I oAt 8t M, B * oos :
m b 1 I . b 1 £ . . . 1 e Ly A §
m i=m i,=m 1.>1 i =l o »

-
At bt Hy ol HoL |
2 M MM ’
(3.3) e, - (1+ § At H)| < § Ioatg ot [H, [[H |+ oo+ atyoint [H| o |H |
i=m i=m i >i |l - L | 2

12

2




8.
M 3
1 2 i
- L L g SRR '
i=m
Now using Lemma 1 to upper bound the right side of (3.3) and to estimate v
3
I at.H, yields (3.2). Q.E.D. :
Feme B i

We require one more preparatory setup. For any M, m and vector z, define

M M ]
2, = D(I88EH )z, = €z,
m
where typp "ty S € and m > M . Let P denote the unique (under (A4)) symmetric positix

definite matrix such that H'P + PH = -I; x'Px is a Liapunov function for the dif-

ferential equation % = Hx, which is asymptotically stable under (A4). Define f

|x|P = (x'Px)l/Q, and let u denote a positive constant such that ulxlg §_|x|2

By Lemma 2, if m > Mk and (tM+1-tm) 2 &y and oy & Dy s we have
z) = [T+ (ty -t )H + 0z,
4 where |o| < KeZ and (under (A4) and using H'P+PH = -I)

. - 7k

‘ 2
‘ ' =it = <
. zlel ZOPZO (tM+l tm) |zo|

— e P
' ' U 2 ' ' . '
+ zO[Po+o P+o'Po + (tM+l tm)(H Po+oc'PH) + (tM+l tm) H PH]zo

from which we get (for some real K)

A

2 2 2
(3.4) |z,0p < (1 - ult, -t + Kedizylp

A

2 2
expl-u(t, -t ) + ke, | zglp -

M 2 .
Thus ICm|P < exp[—u(tM+l-tm) + Kek]. We are now ready for the first theorem.




Theorem 1. Under (Al) to (A5), {Un} is tight on R'.
Proof. By iterating (2.2) we get
(3.5) U e

Define

Wi = W oot & 6W .
J m

Then a summation by parts of (3.5) yields

N+n N+n,=N+n _ E N+n =A+n

; (3.6) Unentl = S8 Un * Cner AN Chira+1 e btNen

The estimate (3.4) will now be used heavily. By dividing the interval

[t

N’tN+n+l] into subintervals of length g (except for the last subinterval, which

is < ek) and using (3.4), we get that there is a sequence of real numbers Gk >0

such that if w & Dk and N > Mk’ then

K380 lUN+n+J.|P = (l+5 ) exP[ —(tN+n+l N)l luNlP

+
i (l+‘5k) eXPE “Nent1” N]IAT[N nl

+ (16 )E exp|- 5(t ~ty. o Aty o |H —le
KLy Pl- 2 Nene1 e J A ven PneaANen It

Henceforth, purely for notational convenience, we suppose that the GWI are

scalar-valued. In general, we need only work with one component at a time anyway.

g e
Proceeding, let us next evaluate L'Wm| s

e et -——— A e e ——— e~ e v et o e e ¥ . x B T




M M M
(3.8) Elwd|? =E [ VAT, /B%. h,h, < 2 ) /A%, ) VAt |Eh;h.|
m 3 i s e i S

i,j=m i=m j>i ]

/Ati ) /Atj IR. .|

351 -

where the last inequality follows by the first half of (A5). With perhaps a dif-
ferent K, the same inequality holds for E|Wﬂ|2. By this estimate and the second

half of (A5), there is a constant Kk such that for N :-Mk

(3.9) Elg. aWie

1/2
N+2 N+QIP I{m‘Dk} :-Kk(tN+n+1—tN+1

|

Inequality (3.7) holds with probability 1 - P{Dk} =p > 1. Letus modify
the {Ui,Hi,isz} on Dk in a way such that (3.7) holds for all n and (3.9) holds

k .k
without the indicator function and where K, does not depend on k. Let {Ui’Hi} denote

: 2
the altered sequence. Then (3.7) and (3.9) together imply that sup. , ElU?l < ™,
-k

Thus the sequence {Ui’i<Mk; U?,izﬂk} is tight on R". Since k is arbitrary and

P > 1as k » », this implies that the original {Ui} sequence is tight. Q.E.D.

4, Weak Convergence of {UN(-)} and the Rate of Convergence

In this section, we show that {UN(')} converges weakly in Dr[O,w) to the

stationary solution to the Gauss-Markov diffusion

/4

(4.1) du = fiudt + ARY/?aB,

1/2

where B(*) is a standard Wiener process and R is a square root of the matrix
R in (A6) below. In particular, this implies that (Xn-w(n+l;x/2 converges in

distribution to a normal random variable with mean 0 and covariance




11.

o
I(exp Ht)ARA'(exp H't)dt.
0

We will require the following additional assumptions.

(AB) {hj} is a stationary sequence, and Elhjl6 < », Define R(i) = Ehjh%+l'

Then R = ] _R(i) is bounded by (A8). §

Let £aj = gb(hl, 2<j) and let Ej denote the expectation conditional on gaj.

(A7) Define p (i) by

B/ TIE R K ar(E)|

ol(l) T j j+1 Jrite

j»4%>0

Then zipi/Q(i) < w®, i

The sup above and sup, below are redundant if we assume that the {hj}

process started at j = -2, and choose the sample space appropriately.
; . S 1/2 2 1/2
(A8) Define p2(l) by p2(1) = sup E 'Ek ktil + Then z fy (i) < =,

We now give some examples of (A7) and (A8). First suppose that {hj} is a
stationary and bounded ¢-mixing process in the sense of [7, p. 166], with of course
Ehj = 0. Let K denote an arbitrary constant. By [8, Lemma 1], |E h3+kl K¢k

1/2

and |E.h, -R(2)| < Kéy. Thus p (i) < K¢;, py(i) < Ké;. If Zz < ®,

g ]+k ]+k+2
then (A7) and (A8) hold. However, if the h. are pounded and ¢-mixing, then

a slightly different proof of Theorem 2 can be given, requiring only Xz 1/2 < ™,

An example of (A6) to (A8). Let Q denote a matrix whose elgenvalues are

inside the unit circle, let {#n} denote a sequence of independent and identically

RSN ST TS DR
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distributed Gaussian random variables and define gn’ © >n > -, by En+l =
Q€ + ¥ . Then {gn} is a stationary sequence. Let Eh(e,Ej) = Ehj = 0 and suppose

that h(+) = h(8,+) satisfies a uniform Lipschitz condition, with constant K Let

1
9% measure wi, s (0
Let us evaluate ElEkE(gk+i)|. Let {wi} denote a sequence with the same

distribution as {wi}, but independent of it. We have
QS
s Q5+ 1 QY

which has the same distribution as

e~ 8
1o~ 8

e L
QY *+ Qg

o~
@y~ A
1

2=0 L

Using the fact that the first term above has the same distribution as ﬁm has for -

any m, together with the Lipschitz condition, yields

|E(h(first term - [
L=

g~ i e T ok i
Q"y,+Q7 & ) - Eh(first t K "

from which (A8) follows. A similar (and omitted) calculation yields (£7).

Theorem 2. Under (Al) - (A8), {UN(')} convepge$ weakly to the stationary solu-

tion to (4.1).

Part 1. Define the "approximation to a Wiener process" WN(') by
m(ty+t)-1  m(ty+t)-1
W) = W = ) /at, h,,
N ¢ R
i=N
with a similar definition for ﬁN(-) (but using GWi in lieu of swi). We will
show that {HN(')} is tight in Dr[O,m) and converges t5 a Wiener process with

covariance matrix Rt. It easily follows from this that the same result must

hold for {ﬁ”(-)}, since (n+2/n+1)u/2 s ] # 0(%0 implies that {|WN(')—ﬁN(-)|}

ronds weakly to the zero process,

————




13.

: . N . E
First we prove tightness of {W (*)}. For notational convenience only, we
assume that the hj are scalar-valued in this part of the proof. Otherwise, we
would work with one component at a time anyway, so there is no loss of generality.

Let £ > k > j > i. We have

(4.2) |Ehihjhkh2| < IEhihjhk

Ry = Ehihthkhll + |Ehihj| |En,h | .

The first term on the right satisfies (use (A7)) i

: 1/2 2. 1/2 2 ;
lahihj(zjhkh2 - Lnkhz)l_i E Ihihjl E |Ejhkhl - EhkhQ{ < Ko, (k-1).

By (A8), the first term on the right of (4.2) is bounded above by

ol L

| A

1/2 2.1/2 2
E Ihihjhkl EV°|Eh, |

|Ehihjthkh2| + |LhihthkEkhl

+ |En,h, |EY 2 ZEY2|E B, |2
| L

k 1

1

{1

j_KOQ(l-k). |

| !

{ Thus ;
(4.3) |Ehihjhkhl| g_Ko%/Q(k-j)oé/Q(z-k) + |RG-1)| |R(2-K)].

Using these bounds, we get

m(tN+t+s)—l

E| ) /%, h,|"
. 1 1
1=m(tN+t)

[ (tes)-wt () |

L2

< K ¥ (st best) "jEn B |
1<j<k<t g kR -

(summation between m(1N+t) and m(tN+t+s)—l; at each use of K it may have a

different value)
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<k T st ar )Y 20 200530 2(0ek) + |R(5-1)] - [RC2-K)| T,
R : S Tl e 2
1:3:}5}
(sum over % and use Atk Z.Atg)
1/2

oK ¥ (AtiAtj)l/?Atk[p (k=) + |R(5-1)]1]

i<i<k :

(sum over j and use Ati 3_Atj)

(4.3) <K ] atat < ks?

i<k s
where the last inequality holds if tyttts and tytt take values in the set {ti}.

If (4.3) holds for all t, s, N, then [ 7], Theorems 15.5 and 12.3 imply

that {WN(°)} is tight in D'[0,») and that all processes which are weak limits have
continuous paths w.p. 1. But, since Atn + 0 and the paths are piecewise constant,

¢ N
it is enough that (4.3) hold for t +t+s and tN+t in the {ti} set. Thus {W (*)}

N
is tight and all limit processes have continuous paths w.p. 1.

Part 2. Now, the hi are treated as vectors rather than scalars. Let N
index a weakly convergent subsequence of {WN(')} and denote the (continuous w.p. 1)
weak limit by W(+<). Note that (4.3) implies that {IWN(')|2} is uniformly inte-
grable. Let S; < t < t+s and q be arbitrary. Let g(-) denote a bounded continuous

function of WN(si), i < q, and let Bi denote expectation conditioned on

{hj’ jsm(tytt)-1}.  Then

Eg(W (5., 1<)[W (t4s)-H" ()]
i=m( tN+t+s)-l

N s N
= Eg(W(s;), i<q)E} ) /8t; h

i=m(tN+t) ‘s

goes to zero as N » «» by (A8). This together with the uniform integrability and

weak convergence imply that Egﬂ(si), i<q)[W(t+s)-W(t)] = 0 for all q, bounded

continuous g and {Si} <t < t+s. Thus W(*) is a continuous martingale. To




e

s L

- N
compute its quadratic variation, repeat the above argument with [WN(t+s)-w (v)]
[WN(t+s)-wN(t)]' replacing [WN(t+s)-wN(t)]. Using (A6), the weak convergence

and uniform integrability yields
Eg(WN(si), 1<) W ()W (O I0W ()W (1) 1" » Eg(W(s;), izq) Rs.

Then the arbitrariness of g and Bs =t < thE yield that the quadratic veriazion
(at s) is Rs. Thus W(*) is a Wiener process with covariance Rs, as asserted.

This result does not depend on the chosen convergent subsequence.

m(tN+t+s)-l

Cm(tN+t)
Il

Part 3. Define the function Cn(t,t+s) = . Define a function

HN(') with values Hﬂ = in [t

N+n N+n” O Tnane1 BN

Then for t € {t -tN, i>0}, and modulo a factor for each term which goes

N+i

to zero uniformly in t w.p. 1 as N » =, the sum (3.6) can be written in the integral

form (since the integrand is constant over Ati intervals)

t
) N = Mo,y + N, A (e) - [CN(s,t)H:A[WN(t)-WN(S)]ds.
0

for t > 0, between the {ti}’ the integral in (4.4) is just a linear interpolation

instead of a piecewise constant interpolation of the sum in (3.6), and we may work

m(tN+t)—1

LT N s o
with it instead. Define H (+) by N (t) = Zi=m(tN)

H.ot,. By (A3), {H'(-)} is
tight in Dr[O,m) and all limits are the constant process with value Ht at t. Note
that {CN(O,t)} is tight on Dq[o,m) for an appropriate integer q, since it con-
verges to exp Ht uniformly on bounded intervals w.p. 1.

We now have essentially all the limits that are required. If H: converged
to the constant ﬁ'w.p. 1 as N > », then the weak convergence of ﬁN(') and conver-
gence of CN(s,t) would imply that (4.4) holds with all functions replaced by their

¥ N
limits (and a weakly convergent subsequence of {UN(O)}taken). Since H_ does not

usually converge in the above sense, a slightly indirect method must be used to
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allow us to make the replacements suggested above. It is convenient to have all
the random functions defined on the same space and to work with w.p. 1 rather than
with weak convergence. To do this we apply the imbedding technique of Skorokhod

- N N WN N k. N - . s
(9], Theorem 3.1.1. The family {U (0),H (+),W (-),C (0,t)} = {¢(+)} is tight in

the appropriate space R x D2r+q

[0,o) =% and all limit functions are continuous
w.p. 1. Extract a convergent subsequence, index it by N, and denote the limit by
(u(0) ,H(+),W(*),c(0,+) = &(+). By the Skorokhod imbedding method [9], Theorem
3.1.1, there exists a probability space (6,5,5) with random processes
@0, 8, ), 0,21 = (M)} and (@(0),H(-),H(+),C(0,+)) = 3(-) defined
on it, where 5N(') (resp., &(+)) has the same distribution as 0N(') (resp.,

#(+)), all the processes in &(*) have continuous paths and EN(') > ¢(+) w.p. 1 in
the topology of &. Since the limit processes are continuous, this means uniform
convergence on bounded intervals. From ﬁN(-), we can recover the random variables
H .5 1 > 0, from which it was constructed, since ﬁN(') is also piecewise constant

N+i?

w.p. 1. Also {HN+i’ i>0} has the same distribution as has {HN+i,1:p}.

. We work with the imbedded processes, but drop the tilde affix. Now,

return to (4.4) and, via the imbedding, suppose that all weak convergences are

w.p. 1 in the above-cited topology. The first two terms of (4.4) converge to
- - N o

(exp Tit) U(0) and (exp Ft) W(t), resp. Note that C'(s,t) = ¢ (0,t)[c (0,s)77"

also converges w.p. 1 uniformly on bounded sets to exp H(t-s). We next write the

dntegral in (4.4) in a more convenient way.

Let A > 0, and let M = max{i: iA<t}. We have
is+a

M-1 N "
) If {c (s,t)H:'A[w (t)-W(s)] - C(iA,t)HgA[W(t)-W(iA)l}ds
il
t
i f CN(S-t)Hg At (£)-wN(s)1 - e .t)H:A[W(t)-H(HA)I}ds
M A

e

- T: ———
feaia o sitae it e
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M-1 N
e 1 s []N(s,0-cia, 0] + [(s)-H(a) | + W (O]

T i=0 iA<s<itth
iA+A

N N o ton
s - C(s,t H |ds|A| plus a similar expressio
[ o-s)] + lets, )] i ] ds| o] plus a simitar e

a

By the w.p. 1 uniform convergences (on bounded intervals) and continuity
of the limit functions and the estimate (A3b), the limit of the above expression
goes to zero uniformly on bounded t sets, w.p. 1, as N » « and then A »+ 0.

Thus, we need only examine the limits of

M-1 iA+A

(4.5) 'Zo C(ia, t)HYATH(t)-H(iA)1ds + j C(MA, £)HLATH(E)-W(MA) 1 ds.
1= s

iA MA

But, by (A3a), (4.5) converges to the same expression with H replacing H:, uni-
formly on bounded intervals, w.p. 1 as N » », By the above calculations we can

write the limit of the third term in (4.4) as
t

(4.6) & f C(s,t)AA[W(t)-W(s)]ds
0

for the imbedded, hence the original processes. Thus UN(t) (the imbedded process)

converges to
(4,7) u(t) = c(0,t)U(0) + C(0,t)A W(t) + (4.6)

uniformly on finite intervals, w.p. 1. Consequently the original UN(') converges
weakly to the process (4.7). But (4.7) is the unique solution to (4.1) with

initial condition U(0). The form is independent of the selected convergent sub-

sequences, Also, via an integration by parts,




18,
T
(4.8) U(t) = c(o,t) UCO) + J C(s,t) A dw_.
0
We need only show that U(0) is the "stationary" initial condition. This
can be easily shown in the following manner. The set of all possible U(0) is
tight because {Un} is. Also the weak limits of {UN(‘)} are also weak limits of
the restrictions to T,») of the weak limits of (the functions are left-shifted
m(tN—T) > m(t -T)
by T) {U (+)} on D" [0,°), since U (T) = Uy- But the latter limits
are of the form (4.8) also. The restriction to [T,») involves simply replacing
t by T+t in (4.8). From this, the tightness of possible U(0), the arbitrariness

of T and the fact that C(0,t) = exp Ht + 0 as t » », we get that U(0) must be

Q-E. D,

the "stationary" initial condition.
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